Phase transitions: 1st-2nd order

definitions, Ehrenfest classification

- Transition superfluide λ ?
- Inctuations vs broadening
- \circ renormalization group, scaling, divergence of ξ
- Ginzburg Landau description, order parameter
- Istorder transitions : no prediction ! hysteresis
- \odot 2nd order transitions : C_{OD=0} < C_{OD≠0}

Ehrenfest : 1st order

21/09/2011

Examples

$AuCrS_2$: Pyrochlore

1st order structural +Antiferomagnetic

Al : Metal

mean-field 2nd order superconducting

21/09/2011

Clausius-Clapeyron

The demonstrate 1st order : $\Delta S = -\Delta M \, dH/dT$ $\Delta S = L/T = \Delta V \, dp/dT$

⊘ 2nd order : $\Delta(C/T) = \Delta(\partial V/\partial T) dp/dT$ or $\Delta(C/T) = -\Delta(\partial M/\partial T) dH/dT$

21/09/2011

1st or 2nd ?

21/09/2011

REAL world fluctuations = broadening !!

ø definitions, Ehrenfest classification

Transition superfluide λ ?

fluctuations vs broadening
 qualitatively, a broad 1st order = sharp 2nd with fluctuations

Clausius-Clapeyron ALWAYS true ! $O \Delta S = -\Delta M \, dH/dT$

 $\Delta S = L/T = \Delta V dp/dT$

doesn't prove the order of the transition
just check for consistent measurements
even true out of equilibrium (Prigogine)
in fact often 1st order with hysteresis

Phase transitions: 1st-2nd order

- Ginzburg Landau description, order parameter
- \circ renormalization group, scaling, divergence of ξ
- $\frac{F}{V} = \frac{k_B T}{V_{coh}} = \frac{k_B T}{\xi^{-\nu}} \qquad \qquad \xi = (1 \frac{T}{T_c})^{-\nu}$

 $\frac{c}{T} = k_B \tau^{-\alpha}$ and $\alpha = 2 - d\nu$

Istorder transitions : no prediction ! hysteresis

2nd order transitions : C_{OD=0} < C_{OD≠0}

Summary : Phase transitions

definitions, Ehrenfest classification

- Transition superfluide λ ?
- Inctuations vs broadening
- \circ renormalization group, scaling, divergence of ξ
- Ginzburg Landau description, order parameter
- Istorder transitions : no prediction ! hysteresis
- 2nd order transitions : C_{OD=0} < C_{OD≠0}

PHONONS

Total energy of phonons : sum over each phonon

 $E_{ph}(T) = \sum_{ph} h\omega_{ph} \cdot n_{BE}(T, h\omega_{ph}) + E_{ph}(O)$

phonon energy

Bose-Einstein distribution

 $n_{BE}(T, \hbar \omega_{ph}) = \frac{1}{e^{\hbar \omega_{ph}/(K_B T)} - 1}$ $\mathsf{E}_{\mathsf{ph}}(\mathsf{O}) : \text{zero point energy}$

21/09/2011

PHONONS How to count phonons ? ... 2 models. $E_{ph}(T) = \sum_{ph} h\omega_{ph}.n_{BE}(T, h\omega_{ph})$

Einstein : ω_{ph} = cte
 Debye : ω_{ph} = v_{son} . K
 different densities of state

cf Kittel or Aschroft

21/09/2011

LES PHONONS

T << θ_D : Debye
C = cte $(T/\theta_D)^3$ où $\theta_D \propto v_{sound}$

 \oslash T >> θ_D : Einstein

The deconvolution is not unique knowing C(T) calculating phonons ??

21/09/2011

PHONONS

Figure 7.3. The heat capacity over the universal gas constant vs the reduced temperature for lead, gold, copper, and diamond. The solid curve is the Debye theoretical curve. (R. B. Leighton, "Principles of Modern Physics," New York, McGraw-Hill Book Co., Inc., 1957, by permission)

Lead, gold, copper, diamond : Debye is a good approx!! $\oslash T \rightarrow \infty : C = 3NK_B$ $\oslash T << \theta_D$: Debye où $\theta_D \propto v_{sound}$ à T << θ_D en J.K⁻¹.mol⁻¹ $c_v = \frac{2\Pi^2}{5} \aleph_A k_B \left(\frac{k_B T}{\hbar_w}\right)^3$

21/09/2011

ELECTRONS

<u>electronic</u> energy = somme for each electron

$E_e(T) = \sum_e \epsilon .n_{FD}(T,\epsilon)$

energy of electron

Fermi-Dirac distribution

$$n_{FD}(T,\epsilon) = \frac{1}{e^{(\epsilon - \epsilon_F)}}$$

 $/(k_B T) + 1$

ELECTRONS

Fermi-Dirac distribution

Only electrons about Fermi energy will contribute to the specific heat (derivative of n_{FD}).

21/09/2011

ELECTRONS

electron counting ?

density of states at E_F : $D(E_F)$

with $k_BT_F = E_F$ in J.K⁻¹.mol⁻¹

$\overline{\mathcal{A}}$	$\Pi^2 \aleph_A k_B$	T
$U_e =$	2	$\cdot \overline{T_F}$

NB : $T_F > 10^4 K$

 $C_e = \Upsilon T$

21/09/2011

the density of states : $D(E_F)$

is related to the effective mass m*

probing electronic correlations

21/09/2011

EXAMPLE : METAL

Metal : electrons + phonons for T << θ_D (Cu : 300K, Pb : 90K ..)

$C = \Upsilon T + A T^3$

dominates at low temperature

21/09/2011

FIG. 1. The plots of C/T versus T^2 for gold, silver, and copper.

21/09/2011

L. L. Isaacs, J. Chem. Phys. 43, 307 (1965)

Deviations :
even T << θ_D: anharmonicity
T -> 0 : magnetic impureties

SPECIFIC HEAT of a SUPERCONDUCTOR

Cp = Bulk Probe !!

21/09/2011

experimental goal

\odot Compute $\Delta C/\Upsilon_c$: substraction of BKG !!!!!!!!

Superconductivity

21/09/2011

electron-phonon coupling (Eliashberg) J.P.Carbotte, Rev. of Mod. Phys. 62 (1990) 1027

𝔄 e-ph renormalization m^{*}=(1+λ)m_e

 $\lambda = \int 2\alpha^2 F(\omega) d\omega / \omega, \ \alpha^2 F(\omega)$ spectral density contains N_e, N_{ph}, V_{int}

- Tc/ $\omega_{ln} << 1$: weak-coupling limit and $\lambda(\omega) = \lambda$ for $\omega < \omega_c$ and =0 otherwise

21/09/2011

CryoCourse Chichiliane

= BCS

21/09/2011

Gap nodes

In a fully gapped superconductor : $C/T = f(T) e^{-\Delta/T} \text{ and prop to } H/H_{c2}$

in a d-wave superconductor :
 line of nodes
 C/T prop to T and prop to (H/H_{c2})^{1/2}

symetry of the gap ex: Fe(Se,Te)

oscillations of Cp when rotating the magnetic field in presence of nodes

